投稿范围:煤(mei)化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)、盐化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)、生物化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)、医药化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)、石油化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)、农(nong)用化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)、化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)环保(bao)、工(gong)(gong)(gong)(gong)(gong)业水处(chu)理(li)、精细(xi)化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)、日用化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)、燃(ran)气化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)、橡胶与(yu)(yu)(yu)轮(lun)胎(tai)工(gong)(gong)(gong)(gong)(gong)业、化(hua)(hua)(hua)(hua)(hua)肥农(nong)药、有机与(yu)(yu)(yu)无机、涂料与(yu)(yu)(yu)油墨、染料与(yu)(yu)(yu)颜料、助剂(ji)与(yu)(yu)(yu)添加剂(ji)、树脂与(yu)(yu)(yu)塑料、胶粘剂(ji)、化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)教(jiao)育、化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)设计、化(hua)(hua)(hua)(hua)(hua)工(gong)(gong)(gong)(gong)(gong)机械(xie)与(yu)(yu)(yu)装备
近日,中国科学院大连化学物理研究所研究员吴忠帅、肖建平团队合作,在电催化水氧化催化剂设计和机理解析研究方面取得进展。合作团队发展了Rh掺杂和RuO2表(biao)面氧(yang)空(kong)位的协同新策略,实现(xian)酸性(xing)水氧(yang)化过程的高效稳定催化转(zhuan)化,并揭示了(le)晶格氧(yang)介导—氧(yang)空(kong)位反应机制(LOM-OVSM)。
电催化析氧反应(OER)作为水分解过程的关键半反应,在质子交换膜水电解制氢技术中具有重要作用。目前,酸性水氧化面临的挑战是催化剂(RuO2、IrO2)催(cui)化活性(xing)和稳定(ding)性(xing)的(de)平(ping)衡,以(yi)及催(cui)化机理(li)(li)吸(xi)附演化机制(AEM)的(de)理(li)(li)论热力学活性(xing)限制和晶格氧(yang)(yang)介导机制(LOM)活性(xing)中心金(jin)属过度氧(yang)(yang)化导致较低(di)耐溶(rong)解性(xing)。
该工作中,研究团队以RuO2催化剂为研究对象,提出了Rh掺杂和RuO2表面氧空位的协同策略构建Ru-O-Rh活性位点,同时优化了本征活性和稳定性,实现了在10 mA cm-2电流密度时的过电位为161 mV,在50 mA cm-2电流密度运行工作700 h后仍能保持99.2%的电化学活性。此外,研究团队进一步通过准原位/原位表征证明了可逆氧物种的循环过程,以实现增强的活性和稳定性。理论计算研究基于Rh-RuO2催(cui)化(hua)模型(xing)筛选吸附演化(hua)机(ji)制(zhi)(AEM)、晶(jing)格(ge)氧(yang)(yang)介导-氧(yang)(yang)空(kong)位(wei)(wei)机(ji)制(zhi)(LOM-OVSM),以及(ji)晶(jing)格(ge)氧(yang)(yang)介导-单金(jin)属位(wei)(wei)点机(ji)制(zhi)(LOM-SMSM)催(cui)化(hua)过程,揭示了富含氧(yang)(yang)空(kong)位(wei)(wei)的(de)(de)Ru-O-Rh位(wei)(wei)点诱导LOM-OVSM最优(you)反应路径,打破了传统AEM的(de)(de)热力学能(neng)垒限制(zhi)。该工(gong)作揭示了电(dian)(dian)化(hua)学酸(suan)性水(shui)氧(yang)(yang)化(hua)的(de)(de)晶(jing)格(ge)氧(yang)(yang)介导—氧(yang)(yang)空(kong)位(wei)(wei)机(ji)制(zhi),为设计高性能(neng)酸(suan)性OER催(cui)化(hua)剂(ji)和深入的(de)(de)机(ji)理分(fen)析(xi)提供(gong)(gong)新的(de)(de)思路,并为质子交换膜(mo)电(dian)(dian)解水(shui)制(zhi)氢的(de)(de)实际应用提供(gong)(gong)参(can)考(kao)。
相关研究成果以Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation为题,于近日发表在《自然-通讯》(Nature Communications)上。研(yan)(yan)究工(gong)作得到国(guo)家重点研(yan)(yan)发计(ji)划、国(guo)家自然科学基金(jin)、榆林创(chuang)新院(yuan)人工(gong)智能科技专(zhuan)项、中科院(yuan)洁净能源创(chuang)新研(yan)(yan)究院(yuan)合作基金(jin)等(deng)项目的资助。
大连化物所(suo)揭(jie)示酸性(xing)水氧化晶格氧介(jie)导—氧空位反应新机制