投稿范围:煤化(hua)(hua)(hua)工(gong)(gong)(gong)、盐(yan)化(hua)(hua)(hua)工(gong)(gong)(gong)、生物化(hua)(hua)(hua)工(gong)(gong)(gong)、医药化(hua)(hua)(hua)工(gong)(gong)(gong)、石(shi)油化(hua)(hua)(hua)工(gong)(gong)(gong)、农用(yong)化(hua)(hua)(hua)工(gong)(gong)(gong)、化(hua)(hua)(hua)工(gong)(gong)(gong)环保(bao)、工(gong)(gong)(gong)业(ye)水(shui)处(chu)理、精细化(hua)(hua)(hua)工(gong)(gong)(gong)、日用(yong)化(hua)(hua)(hua)工(gong)(gong)(gong)、燃气(qi)化(hua)(hua)(hua)工(gong)(gong)(gong)、橡(xiang)胶与轮胎工(gong)(gong)(gong)业(ye)、化(hua)(hua)(hua)肥农药、有机(ji)(ji)与无机(ji)(ji)、涂(tu)料与油墨、染(ran)料与颜料、助剂与添加剂、树脂(zhi)与塑料、胶粘剂、化(hua)(hua)(hua)工(gong)(gong)(gong)教育、化(hua)(hua)(hua)工(gong)(gong)(gong)设计、化(hua)(hua)(hua)工(gong)(gong)(gong)机(ji)(ji)械(xie)与装备
近(jin)日,中(zhong)国科学(xue)院上海高(gao)等(deng)研(yan)(yan)究院研(yan)(yan)究员史(shi)吉平、刘莉团队,在(zai)微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)(wu)协(xie)(xie)同强(qiang)化餐厨垃圾(ji)厌氧(yang)(yang)发(fa)酵(jiao)(jiao)产(chan)甲烷(wan)方面(mian)取得(de)进展。相(xiang)关研(yan)(yan)究成果(guo)以(yi)Synergistic bioaugmentation with Clostridium thermopalmarium and Caldibacillus thermoamylovorans improved methane production from thermophilic anaerobic digestion of food waste为(wei)题,发(fa)表在(zai)《化学(xue)工程杂志》(Chemical Engineering Journal)上。该研(yan)(yan)究探讨了热(re)棕榈梭(suo)菌(jun)(jun)Clostridium thermopalmarium与热(re)淀粉芽(ya)孢杆(gan)菌(jun)(jun)Caldibacillus thermoamylovorans协(xie)(xie)同生(sheng)(sheng)(sheng)物(wu)(wu)强(qiang)化餐厨垃圾(ji)高(gao)温厌氧(yang)(yang)发(fa)酵(jiao)(jiao)产(chan)甲烷(wan)的(de)(de)性能,证实了多(duo)(duo)菌(jun)(jun)株协(xie)(xie)同生(sheng)(sheng)(sheng)物(wu)(wu)强(qiang)化比单菌(jun)(jun)株生(sheng)(sheng)(sheng)物(wu)(wu)强(qiang)化具有(you)更显著的(de)(de)产(chan)甲烷(wan)效果(guo),并通过微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)(wu)群落结构(gou)和(he)宏基因(yin)(yin)组(zu)学(xue)分(fen)析(xi)剖析(xi)了多(duo)(duo)菌(jun)(jun)株协(xie)(xie)同生(sheng)(sheng)(sheng)物(wu)(wu)强(qiang)化厌氧(yang)(yang)发(fa)酵(jiao)(jiao)机制,揭示了多(duo)(duo)菌(jun)(jun)株协(xie)(xie)同生(sheng)(sheng)(sheng)物(wu)(wu)强(qiang)化可(ke)(ke)有(you)效提(ti)(ti)高(gao)微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)(wu)群落的(de)(de)均匀(yun)度(du)和(he)多(duo)(duo)样(yang)性,富集微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)(wu)菌(jun)(jun)群中(zhong)的(de)(de)碳(tan)水(shui)化合物(wu)(wu)降(jiang)解(jie)菌(jun)(jun)和(he)蛋(dan)白(bai)质降(jiang)解(jie)菌(jun)(jun),提(ti)(ti)高(gao)大分(fen)子有(you)机物(wu)(wu)水(shui)解(jie)、三羧酸循环以(yi)及氢营养型产(chan)甲烷(wan)途径关键酶的(de)(de)基因(yin)(yin)丰(feng)度(du)。这一成果(guo)为(wei)餐厨垃圾(ji)处理提(ti)(ti)供了可(ke)(ke)以(yi)有(you)效提(ti)(ti)高(gao)甲烷(wan)产(chan)量的(de)(de)协(xie)(xie)同生(sheng)(sheng)(sheng)物(wu)(wu)强(qiang)化策略。
高温(wen)厌氧发酵可以将餐厨(chu)垃(la)圾中(zhong)的(de)(de)大分子有机物通(tong)过(guo)微(wei)生(sheng)物的(de)(de)生(sheng)长代谢转化为甲烷,同时(shi)有效杀灭致病菌和虫卵,是实现餐厨(chu)垃(la)圾资源化、无害(hai)化、减量化的(de)(de)常(chang)用(yong)处理技术之一。而高温(wen)厌氧发酵系(xi)统存(cun)在(zai)功能微(wei)生(sheng)物种类(lei)少(shao)、浓度低(di)、活性差的(de)(de)问(wen)题,形(xing)成产气率低(di)、稳定性差的(de)(de)技术瓶颈。
针对(dui)上述(shu)问(wen)题,该团队(dui)提(ti)出了热棕榈梭菌(jun)与(yu)热淀粉(fen)芽(ya)孢杆菌(jun)协同(tong)生物(wu)(wu)(wu)(wu)(wu)(wu)强化(hua)(hua)厌氧(yang)(yang)发(fa)酵产(chan)甲(jia)烷(wan)的(de)(de)策(ce)略,旨在(zai)(zai)通过增(zeng)加餐(can)厨(chu)垃圾高温(wen)厌氧(yang)(yang)发(fa)酵系(xi)统中功(gong)能(neng)微(wei)生物(wu)(wu)(wu)(wu)(wu)(wu)的(de)(de)数(shu)量,调节微(wei)生物(wu)(wu)(wu)(wu)(wu)(wu)群落结(jie)构,提(ti)高厌氧(yang)(yang)发(fa)酵系(xi)统稳定性,从根本(ben)上改善(shan)高温(wen)厌氧(yang)(yang)发(fa)酵系(xi)统的(de)(de)性能(neng)。同(tong)时,研究(jiu)将两种(zhong)功(gong)能(neng)微(wei)生物(wu)(wu)(wu)(wu)(wu)(wu)的(de)(de)优(you)势(shi)结(jie)合(he)起来,突破(po)单一(yi)菌(jun)种(zhong)功(gong)能(neng)的(de)(de)局限(xian)性。研究(jiu)表明,协同(tong)生物(wu)(wu)(wu)(wu)(wu)(wu)强化(hua)(hua)组(zu)相比于对(dui)照(zhao)组(zu)提(ti)高了24.77% ± 1.98%,强化(hua)(hua)效果(guo)优(you)于单一(yi)强化(hua)(hua)组(zu)。微(wei)生物(wu)(wu)(wu)(wu)(wu)(wu)群落结(jie)构组(zu)成(cheng)分(fen)析显示(shi)协同(tong)生物(wu)(wu)(wu)(wu)(wu)(wu)强化(hua)(hua)增(zeng)加了碳水(shui)(shui)(shui)化(hua)(hua)合(he)物(wu)(wu)(wu)(wu)(wu)(wu)降(jiang)解菌(jun)Lentimicrobium和(he)Caldicoprobacter,以(yi)及(ji)蛋白(bai)质降(jiang)解菌(jun)Fastidiosipila和(he)Keratinibaculum的(de)(de)相对(dui)丰度(du)。此外,与(yu)有(you)机物(wu)(wu)(wu)(wu)(wu)(wu)水(shui)(shui)(shui)解,特别是碳水(shui)(shui)(shui)化(hua)(hua)合(he)物(wu)(wu)(wu)(wu)(wu)(wu)、蛋白(bai)质水(shui)(shui)(shui)解,以(yi)及(ji)三羧(suo)酸循环和(he)氢(qing)营(ying)养型产(chan)甲(jia)烷(wan)途径相关(guan)的(de)(de)关(guan)键基因丰度(du),在(zai)(zai)协同(tong)生物(wu)(wu)(wu)(wu)(wu)(wu)强化(hua)(hua)组(zu)中得到(dao)了提(ti)高。该研究(jiu)利(li)用(yong)不(bu)同(tong)功(gong)能(neng)微(wei)生物(wu)(wu)(wu)(wu)(wu)(wu)协同(tong)强化(hua)(hua)厌氧(yang)(yang)发(fa)酵产(chan)甲(jia)烷(wan)的(de)(de)策(ce)略,为(wei)有(you)机固废处理(li)和(he)生物(wu)(wu)(wu)(wu)(wu)(wu)能(neng)源(yuan)生产(chan)提(ti)供了技术支(zhi)持。
研(yan)究工作得到(dao)国家重(zhong)点(dian)研(yan)发计划“固废(fei)资源化(hua)”专项“城镇易(yi)腐有(you)机固废(fei)生物转(zhuan)化(hua)与二次污染控制技术(shu)”的支持。
图1. 多(duo)菌株(zhu)协同生物强化提高厌氧发酵产甲(jia)烷(wan)性能示意图
图2. 多菌株协(xie)同生物强化对(dui)关键(jian)代谢途径的(de)功能(neng)基因的(de)影响